Neuroblast niche position is controlled by Phosphoinositide 3-kinase-dependent DE-Cadherin adhesion.
نویسندگان
چکیده
Correct positioning of stem cells within their niche is essential for tissue morphogenesis and homeostasis. How stem cells acquire and maintain niche position remains largely unknown. Here, we show that a subset of brain neuroblasts (NBs) in Drosophila utilize Phosphoinositide 3-kinase (PI3-kinase) and DE-cadherin to build adhesive contact for NB niche positioning. NBs remain within their native microenvironment when levels of PI3-kinase activity and DE-cadherin are elevated in NBs. This occurs through PI3-kinase-dependent regulation of DE-Cadherin-mediated cell adhesion between NBs and neighboring cortex glia, and between NBs and their ganglion mother cell daughters. When levels of PI3-kinase activity and/or DE-Cadherin are reduced in NBs, NBs lose niche position and relocate to a non-native brain region that is rich in neurosecretory neurons, including those that secrete some of the Drosophila insulin-like peptides. Linking levels of PI3-kinase activity to the strength of adhesive attachment could provide cancer stem cells and hematopoietic stem cells with a means to cycle from trophic-poor to trophic-rich microenvironments.
منابع مشابه
Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways.
Cell adhesion molecules of the cadherin family contribute to the regulation of cell shape and fate by mediating strong intercellular adhesion through Ca2+-dependent interaction of their ectodomain and association of their cytoplasmic tail to actin. However, the mechanisms co-ordinating cadherinmediated adhesion with the reorganization of the actin cytoskeleton remain elusive. Here, the formatio...
متن کاملRecruitment of phosphoinositide 3-kinase defines a positive contribution of tyrosine kinase signaling to E-cadherin function.
Classical cadherin adhesion molecules can function as adhesion-activated cell-signaling receptors. One key target for cadherin signaling is the lipid kinase phosphoinositide (PI) 3-kinase, which is recruited to cell-cell contacts and activated by E-cadherin. In this study, we sought to identify upstream factors necessary for E-cadherin to activate PI 3-kinase signaling. We found that inhibition...
متن کاملThe p85 subunit of phosphoinositide 3-kinase is associated with beta-catenin in the cadherin-based adhesion complex.
Cell adhesion is fundamental to establishing and maintaining the discrete tissues in multicellular organisms. Adhesion must be sufficiently strong to preserve tissue architecture, whilst having the capacity to readily dissociate to permit fundamental processes, such as wound repair, to occur. However, very little is known about the signalling mechanisms involved in temporary down-regulation of ...
متن کاملN-cadherin regulates spatially polarized signals through distinct p120ctn and β-catenin-dependent signaling pathways
The spatial distribution of molecular signals within cells is crucial for cellular functions. Here, as a model to study the polarized spatial distribution of molecular activities, we used cells on micropatterned strips of fibronectin with one end free and the other end contacting a neighbouring cell. Phosphoinositide 3-kinase and the small GTPase Rac display greater activity at the free end, wh...
متن کاملRegulation of post-embryonic neuroblasts by Drosophila Grainyhead
The Drosophila post-embryonic neuroblasts (pNBs) are neural stem cells that persist in the larval nervous system where they proliferate to produce neurons for the adult CNS. These pNBs provide a good model to investigate mechanisms regulating the maintenance and proliferation of stem cells. The transcription factor Grainyhead (Grh), which is required for morphogenesis of epidermal and tracheal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 144 5 شماره
صفحات -
تاریخ انتشار 2017